来源:人民日报

核心阅读

我国科学家最新研究表明,通过电催化结合生物合成的方式,将二氧化碳高效还原合成高浓度乙酸,进一步利用微生物可以合成葡萄糖和脂肪酸。该成果以封面文章形式,于北京时间4月28日发表于国际期刊《自然·催化》上。这项突破为人工和半人工合成“粮食”提供了新技术,为进一步发展基于电力驱动的新型农业与生物制造业提供了新范例。

去年9月,我国科学家在合成生物学领域取得重大突破,在国际上首次在实验室实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以合成淀粉,还能合成其他东西吗?

日前,由电子科技大学夏川课题组、中国科学院深圳先进技术研究院于涛课题组与中国科学技术大学曾杰课题组共同完成的最新研究表明,通过电催化结合生物合成的方式,将二氧化碳高效还原合成高浓度乙酸,进一步利用微生物可以合成葡萄糖和脂肪酸。

北京时间4月28日,该成果以封面文章形式发表于国际期刊《自然·催化》上。“该工作为人工和半人工合成‘粮食’提供了新技术。”中国科学院院士、中国化学会催化专业委员会主任李灿说。

二氧化碳先转化为一氧化碳,再合成乙酸

二氧化碳究竟如何合成葡萄糖和脂肪酸?

“首先,我们需要把二氧化碳转化为可供微生物利用的‘原料’,方便微生物发酵。”曾杰说,清洁、高效的电催化技术可以在常温常压条件下工作,是实现这个过程的理想选择。

至于要转化为哪种“原料”,研究人员将目光瞄准了乙酸。因为乙酸不仅是食醋的主要成分,也是一种优秀的生物合成碳源,可以转化为葡萄糖等其他生物物质。

“二氧化碳直接电解可以得到乙酸,但效率不高,所以我们决定分两步——先高效得到一氧化碳,再从一氧化碳到乙酸。”曾杰说。

目前,一氧化碳到乙酸的电合成效率(即乙酸法拉第效率)和纯度不尽如人意。对此,科研人员发现,一氧化碳通过脉冲电化学还原工艺形成的晶界铜催化合成乙酸法拉第效率可达52%。

“实际生产中,提升电流可以提升功率,但是可能会降低法拉第效率。”夏川说,就好比把每天的工作时间从8小时延长到12小时,虽然时间更久,但工作效率反而会下降。“因此,我们把最高偏电流密度提升到321mA/cm2(毫安/平方厘米)时,乙酸法拉第效率仍保持在46%,能够较好地保持高电流和高法拉第效率的平衡。”

不过,常规电催化装置生产出的乙酸混合着很多电解质盐,无法直接用于生物发酵。所以,为了“喂饱”微生物,不仅要提升转化效率,保证“食物”的数量,还要得到不含电解质盐的纯乙酸,保证“食物”的质量。