这种对干扰的免疫性称,称之为“拓扑保护”,该研究一开始来源于凝聚态物理,并且产生了革命性的影响,现在正以不可思议的速度扩展到了光学、声学,以及各种之前从未想过的应用上。

通过使用当前的硅制造工艺设计和生产小型化平台,NTU 的太赫兹芯片将很容易集成到电子和光子电路设计中,并将有助于将来太赫兹的广泛采用。

制作步骤:设计三角孔小硅芯片是关键

据张柏乐介绍,不同于光芯片需要从 0 到 1 开始做,太赫兹芯在制备上可以借鉴硅芯片的技术。

2020 年初,张柏乐的博士后杨怡豪,带领 NTU 和日本大阪大学的团队,在《自然 · 光子学》发表一篇题为《太赫兹拓扑光子学用于片上通信》(Terahertz topological photonics for on-chip communication)的论文。该论文提到,太赫兹芯片在 5G 和 6G 方面有着巨大潜力,然而要想实现高集成(high integration)、低成本的解决方案,依然有需要攻克的问题。

比如,使用常规方法制备太赫兹波导器件时,稍有不慎就会被材料缺陷、和材料弯曲所影响。

为解决上述难题,研究团队以“谷态”光子拓扑绝缘体为基础,通过全硅芯片上的尖锐弯折实验,证明了太赫兹拓扑谷传输的强大能力。

具体来说,谷状(valley states)由于具有鲁棒性、单模传输和线性色散等三大性能,因此是极好的信息载体。

两年前,研究团队就已经发现了“谷态”光子拓扑绝缘体的奇特物理特性,并在微波波段首次实验验证了“拓扑保护”现象。

利用上述状态,研究团队进一步在太赫兹波段,实现了“谷态”光子拓扑绝缘体,并成功演示出在太赫兹芯片上的无差错通信,并能实时传输未压缩的 4K 高清晰度视频。

具体做法是,先设计带有一排三角孔的小硅芯片,当小三角孔与大三角孔指向相反方向,光波就能得到 “拓扑保护”,最终让太赫兹芯片实现无差错地传输信号,还能让太赫兹芯片对此前硅芯片可能出现的任何制造缺陷免疫,就像“打了疫苗一样”。

浙江青年学者造出超高速太赫兹无线芯片,是实现 6G 的关键技术

图 | 用三角孔来实现 “拓扑保护”(来源:Nature Photonics )

是实现 6G 的关键技术,比 5G 快 10 到 100 倍

本次 NTU 太赫兹芯片的诞生,标志着人类在太赫兹光谱区域,首次实现光子拓扑绝缘体。这意味着更多的光子拓扑绝缘体太赫兹,将可以互连集成到无线通信设备中,从而为 6G 通信提供前所未有的每秒 TB 级的速度,其比 5G 还要快 10 到 100 倍。