小伙伴,对于求函数值域的常用方法和函数的值域怎么算,很多人可能不是很了解。因此,今天我将和大家分享一些关于求函数值域的常用方法和函数的值域怎么算的知识,希望能够帮助大家更好地理解这个话题。
本文目录一览
求函数值域的常用方法
求函数值域的常用方法有:化归法、复合函数法、判别式法、图像法、分离常数法、反函数法、换元法、不等式法、单调性法。在函数中,因变量的变化而变化的取值范围叫做这个函数的值域。求值域的方法
化归法:
把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法。
图像法:根据函数图像,观察最高点和最低点的纵坐标。
配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。
反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
函数的值域怎么算
求函数的值域的常用方法如下:
1、图像法:根据函数图象,观察最高点和最低点的纵坐标。
2、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
5、换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
6、判别式法:判别式法即利用二次函数的判别式求值域。
7、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
8、折叠三角代换法:利用基本的三角关系式,进行简化求值。例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1。直接计算麻烦,用三角代换法比较简单。做法:设a=sinx,b=cosx,c=siny,d=cosy,则ac+bd=sinx*siny+cosx*cosy=cos(y-x),因为我们知道cos(y-x)小于等于1,所以不等式成立。
总结:以上就是本站针对你的问题搜集整理的答案,希望对你有所帮助。