朋友们,对于软磁材料的新软磁体和纳米晶磁粉芯,很多人可能不是很了解。因此,今天我将和大家分享一些关于软磁材料的新软磁体和纳米晶磁粉芯的知识,希望能够帮助大家更好地理解这个话题。

本文目录一览

软磁材料的新软磁体

软磁铁氧体的特点是:饱和磁通密度低,磁导率低,居里温度低,中高频损耗低,成本低。前三个低是它的缺点,限制了它的使用范围,现在(21世纪初)正在努力改进。后两个低是它的优点,有利于进入高频市场,现在(21世纪初)正在努力扩展。
以100kHz,0.2T和100℃下的损耗为例,TDK公司的PC40为410mW/cm3,PC44为300mW/cm3,PC47为250mW/cm3。TOKIN公司的BH1为250mW/cm3,损耗不断在下降。国内金宁生产的JP4E也达到300mW/cm3。
不断地提高工作频率,是另一个努力方向。TDK公司的PC50工作频率为500kHz至1MHz。FDK公司的7H20,TOKIN的B40也能在1MHz下工作。Philips公司的3F4,3F45,3F5工作频率都超过1MHz。国内金宁的JP5,天通的TP5A工作频率都达到500kHz至1.5MHz。东磁的DMR1.2K的工作频率甚至超越3MHz,达到5.64MHz。
磁导率是软磁铁氧体的弱项。现在(21世纪初)国内生产的产品一般为10000左右。国外TDK公司的H5C5,Philips公司的3E9,分别达到30000和20000。
采用SHS法合成MnZn铁氧体材料的研究,值得注意。用这种方法的试验结果表明,可以大大降低铁氧体的制造能耗和成本。国内已有试验成功的报导。铁基非晶合金在工频和中频领域,正在和硅钢竞争。铁基非晶合金和硅钢相比,有以下优缺点。
1)铁基非晶合金的饱和磁通密度Bs比硅钢低,但是,在同样的Bm下,铁基非晶合金的损耗比0.23mm厚的3%硅钢小。一般人认为损耗小的原因是铁基非晶合金带材厚度薄,电阻率高。这只是一个方面,更主要的原因是铁基非晶合金是非晶态,原子排列是随机的,不存在原子定向排列产生的磁晶各向异性,也不存在产生局部变形和成分偏移的晶粒边界。因此,妨碍畴壁运动和磁矩转动的能量壁垒非常小,具有前所未有的软磁性,所以磁导率高,矫顽力小,损耗低。
2)铁基非晶合金磁芯填充系数为0.84~0.86,与硅钢填充系数0.90~0.95相比,同样重量的铁基非晶合金磁芯体积比硅钢磁芯大。
3)铁基非晶合金磁芯的工作磁通密度为1.35T~1.40T,硅钢为1.6T~1.7T。铁基非晶合金工频变压器的重量是硅钢工频变压器的重量的130%左右。但是,即使重量重,对同样容量的工频变压器,磁芯采用铁基非晶合金的损耗,比采用硅钢的要低70%~80%。
4)假定工频变压器的负载损耗(铜损)都一样,负载率也都是50%。那么,要使硅钢工频变压器的铁损和铁基非晶合金工频变压器的一样,则硅钢变压器的重量是铁基非晶合金变压器的18倍。因此,国内一般人所认同的抛开变压器的损耗水平,笼统地谈论铁基非晶合金工频变压器的重量、成本和价格,是硅钢工频变压器的130%~150%,并不符合市场要求的性能价格比原则。国外提出两种比较的方法,一种是在同样损耗的条件下,求出两种工频变压器所用的铜铁材料重量和价格,进行比较。另一种方法是对铁基非晶合金工频变压器的损耗降低瓦数,折合成货币进行补偿。每瓦空载损耗折合成5~11美元,相当于人民币42~92元。每瓦负载损耗折合成0.7~1.0美元,相当于人民币6~8.3元。例如一个50Hz,5kVA单相变压器用硅钢磁芯,报价为1700元/台;空载损耗28W,按60元人民币/W计,为1680元;负载损耗110W,按8元人民币/W计,为880元;则,总的评估价为4260元/台。用铁基非晶合金磁芯,报价为2500元/台;空载损耗6W,折合成人民币360元;负载损耗110W,折合成人民币880元,总的评估价为3740元/台。如果不考虑损耗,单计算报价,5kVA铁基非晶合金工频变压器为硅钢工频变压器的147%。如果考虑损耗,总的评估价为89%。
5)现在(21世纪初)测试工频电源变压器磁芯材料损耗,是在畸变小于2%的正弦波电压下进行的。而实际的工频电网畸变为5%。在这种情况下,铁基非晶合金损耗增加到106%,硅钢损耗增加到123%。如果在高次谐波大,畸变为75%的条件下(例如工频整流变压器),铁基非晶合金损耗增加到160%,硅钢损耗增加到300%以上。说明铁基非晶合金抗电源波形畸变能力比硅钢强。
6)铁基非晶合金的磁致伸缩系数大,是硅钢的3~5倍。因此,铁基非晶合金工频变压器的噪声为硅钢工频变压器噪声的120%,要大3~5dB。
7)现行市场上,铁基非晶合金带材价格是0.23mm3%取向硅钢的150%,是0.15mm3%取向硅钢(经过特殊处理)的40%左右。
8)铁基非晶合金退火温度比硅钢低,消耗能量小,而且铁基非晶合金磁芯一般由专门生产厂制造。硅钢磁芯一般由变压器生产厂制造。
根据以上比较,只要达到一定生产规模,铁基非晶合金在工频范围内的电子变压器中将取代部分硅钢市场。在400Hz至10kHz中频范围内,即使有新的硅钢品种出现,铁基非晶合金仍将会取代大部分0.15mm以下厚度的硅钢市场。
值得注意的是,日本正在大力开发FeMB系非晶合金和纳米晶合金,其Bs可达1.7~1.8T,而且损耗为现有FeSiB系非晶合金的50%以下,如果用于工频电子变压器,工作磁通密度达到1.5T以上,而损耗只有硅钢工频变压器的10%~15%,将是硅钢工频变压器的更有力的竞争者。日本预计在2005年就可以将FeMB系非晶合金工频变压器试制成功,并投入生产。
非晶纳米晶合金在中高频领域中,正在和软磁铁氧体竞争。在10kHz至50kHz电子变压器中,铁基纳米晶合金的工作磁通密度可达0.5T,损耗P0.5/20k≤25W/kg,因而,在大功率电子变压器中有明显的优势。在50kHz至100kHz电子变压器中,铁基纳米晶合金损耗P0.2/100k为30~75W/kg,
铁基非晶合金P0.2/100k为30W/kg,可以取代部分铁氧体市场。
非晶纳米晶合金经过20多年的推广应用,已经证明其具有下述优点:
1)不存在时效稳定性问题,纳米晶合金在200℃以下,钴基非晶合金在100℃以下,经过长期使用,性能无显著变化;
2)温度稳定性比软磁铁氧体好,在-55℃至150℃范围内,磁性能变化5%~10%,而且可逆;经过争论,现在(21世纪初)对磁粉芯等已经取得了一致认识,即认为它属于软磁复合材料。软磁复合材料是将磁性微粒均匀分散在非磁性物中形成的。与传统的金属软磁合金和铁氧体材料相比,它有很多独特的优点:磁性金属粒子分散在非导体物件中,可以减少高频涡流损耗,提高应用频率;既可以采取热压法加工成粉芯,也可以利用现在(21世纪初)的塑料工程技术,注塑制造成复杂形状的磁体;具有密度小,重量轻,生产效率高,成本低,产品重复性和一致性好等优点。缺点是由于磁性粒子之间被非磁性体分开,磁路隔断,磁导率现在(21世纪初)一般在100以内。不过,采用纳米技术和其他措施,国外已有磁导率超过1000的报导,最大可达6000。
软磁复合材料的磁导率受到很多因素的影响,如磁性粒子的成分,粒子的形状,尺寸,填充密度等。因此,根据工作频率可以进行调整。
磁粉芯是软磁复合材料的典型例子。现在(21世纪初)已在20kHz至100kHz甚至1MHz的电感器中取代了部分软磁铁氧体。例如铁硅铝磁粉芯,硅含量为8.8%,铝为5.76%,剩余全为铁。粒度为90~45μm,45~32μm和32~30μm。用硅树脂作粘接剂,1%左右硬脂酸作润滑剂,在2t/cm2压力下,制成13×8×5的环形磁芯,在氢气中用673°K,773°K,873°K退火,使磁导率达到100,300,600。在100kHz下损耗低,已经代替软磁铁氧体和MPP磁粉芯用于电感器中。
已经有人对大功率电源的电感器用软磁复合材料——磁粉芯进行了开发研究。在20kHz以下,磁导率基本不变。在1.0T下,磁导率为100左右。50Hz~20kHz损耗小,可制成100kg重量以上的大型的磁芯,而且在20kHz下音频范围,噪声比环形铁氧体磁芯降低10dB。可以在大功率电源中代替硅钢和软磁铁氧体。
有人用钴/二氧化硅(Co/SiO2)纳米复合软磁材料制作不同于薄膜的大尺寸磁芯。钴粒子平均尺寸为30μm,填充度40%至90%,经过搅拌后,退火形成Co/SiO2纳米复合粉,然后压制成环形磁芯。磁导率在300MHz以下,都可达到16。镍锌铁氧体的磁导率为12,而且在100MHz以后迅速下降。证明在高频和超高频下,软磁复合材料也可取代部分铁氧体市场。

返回目录

纳米晶磁粉芯

纳米晶软磁粉芯

该项目由南昌大学材料科学与技术学院研发。这是一种以纳米晶体金属材料(铁基)为基体材料,与其它纳米粉体(如纳米TiO2)复合后,严格按照一定的尺寸和结构要求成型的一种纳米复合材料磁芯。该产品具有高饱和磁感、低铁损、高起始导磁率、低矫顽力的特性,可取代硅钢、坡莫合金、铁氧体等传统软磁材料铁芯,实现高频信号转换、控制、保护、滤波、抗干扰、稳压、多路输出、电压调节等功能。

技术特点:这类材料具有高磁导率、高饱和磁通、低矫顽力、低铁损、频散特性好等优点,是目前世界上公认的综合性能最好的软磁材料.目前,这种材料已在很宽的领域内代替Co基非晶和Fe基非晶制造出共模扼流圈、高频开关电源、高频逆变器、零序互感器等许多电气元件.同时,这种材料也是高灵敏度保真磁头、高性能磁放大器等元件的最佳材料。

技术路线:单辊法制备铁基非晶软磁带材非晶材料热处理与磁性能调整预粉碎(高能球磨)热处理与磁性能调整气流粉碎粉体分级粉体表面处理粉体性能检测。

技术水平:1、完全能够按照当前国际市场上软磁粉芯的要求设计并制造出合格的国产粉芯。技术水平为国内领先,达到国际先进水平。2、非晶粉体粒度达到10μm以下;纳米晶粉体粒度达到1μm以下。能稳定生产,工艺成熟。技术水平为国内领先,达到国际先进水平。

应用范围:广泛应用于开关电源、通讯电源中、逆变电源、UPS不间断电源中制作高频变压器、控制变压器、磁放大器、ISDN信号转换器、共模电感器、噪声滤波器、滤波电感器、储能电感、饱和电感、电抗器、尖峰抑制器、脉冲压缩器、开关管保护器、DC-DC转换器控制元件。

市场前景及效益分析:本公司技术具有技术新颖、投资少、见效快的特点,特别适合中国国情,适合中小企业、个体经营者投产;主要产品:非晶/纳米晶粉体(包括超细粉体)是基本的工业原料(磁粉体),不存在销售问题;磁粉芯更是铁芯的替代品,不仅在性能上优越,价格上也具有竞争力。针对Fe73.5Cu1Nb3Si13.5B9基非晶/纳米晶材料提出了制备超细粉体的要求。国内外未见有该项目创新内容方面的文献报道,同时,我国生产实践也确实没有该方面的技术使用。目前,国内市场仅有日本东芝生产的粉芯在PC电源市场上销售。该项目通过科技园已成功转让,并正在建立生产线。

纳米微晶软磁材料

非晶材料通常采用熔融快淬的工艺。Fe-Si-B是一类重要的非晶态软磁材料。如果直接将非晶材料在晶化温度进行退火,所获得的晶粒分布往往是不均匀的。为了获得均匀的纳米微晶材料,人们在Fe-Si-B合金中再添加Nb、Cu元素。Cu、Nb均不回溶于FeSi合金。添加Cu有利于生成铁微晶的成核中心,而Nb有利于细化晶粒。1988年牌号为Finement的著名纳米微晶软磁材料问世了。其组成为Fe73.5Cu1Nb3Si13.5B9,磁导率高达105,饱和磁感应强度为1.30T,性能优于铁氧体与非磁性材料。作为工作频率为30kHz的2kW开关电源变压器,重量仅为300g,体积仅为铁氧体的1/5,效率高达96%。继Fe-Si-B纳米微晶软磁材料后,20世纪90年代Fe-M-B、Fe-M-C、Fe-M-N、Fe-M-O等系列纳米微晶软磁材料如雨后春笋破土而出。其中M为Zr、Hf、Nb、Ta、V等元素,例如组成为Fe85.6Nb3.3Zr3.3B6.8Cu1的纳米坡莫材料。纳米微晶软磁材料目前沿着高频、多功能方向发展,其应用领域将遍及软磁材料应用的各方面,如功率变压器、脉冲变压器、高频高压器、可饱和电抗器、互感器、磁屏蔽、磁头、磁开关、传感器等,它将成为铁氧体的有力竞争者。新近发现的纳米微晶软磁材料在高频场中具有巨磁阻抗效应,又为它作为磁敏感元件的应用增添了多彩的一笔。

随着半导体元件大规模集成化,电子元器件趋于微型化,电子设备趋于小型化。相比之下,磁性元件的小尺寸化相形见绌。近年来,磁性薄膜器件如电感器、高密度读出磁头等有了显著的进展。1993年发现的纳米结构Fe55~58M7~22O12~34(其中M=Hf,Zr,…),具有优异的频率特性。Fe-M-O软磁膜是由小于10nm的磁性微晶嵌于非晶态Fe-M-O的膜中形成的纳米复合薄膜。它具有较高的电阻率(ρ>mW·m),相对低的矫顽力(Hc≤400A/m),较高的饱和磁化强度(Is>0.9T),因而在高频段亦具有高磁导率与品质因子。此外抗腐蚀性强,其综合性能远高于以往的磁性薄膜材料。这类薄膜可望应用于高频微型开关电源,高密度数字记录磁头以及噪声滤波等。

返回目录

总结:以上就是本站针对你的问题搜集整理的答案,希望对你有所帮助。