亲爱的网友们,对于函数产生的社会背景和函数产生的社会背景,很多人可能不是很了解。因此,今天我将和大家分享一些关于函数产生的社会背景和函数产生的社会背景的知识,希望能够帮助大家更好地理解这个话题。

本文目录一览

函数产生的社会背景

函数这个数学名词是莱布尼兹在1694年开始使用的,以描述曲线的一个相关量,如曲线的斜率或者曲线上的某一点。莱布尼兹所指的函数现在被称作可导函数,数学家之外的普通人一般接触到的函数即属此类。对于可导函数可以讨论它的极限和导数。此两者描述了函数输出值的变化同输入值变化的关系,是微积分学的基础。

1718年,约翰·贝努里(en:JohannBernoulli)把函数定义为“一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量。”1748年,约翰·贝努里的学生欧拉(LeonhardEuler)在《无穷分析引论》一书中说:“一个变量的函数是由该变量和一些数或[常量]]以任何一种方式构成的解析表达式”。例如f(x)=sin(x)+x3。1775年,欧拉在《微分学原理》一书中又提出了函数的一个定义:“如果某些量以如下方式依赖于另一些量,即当后者变化时,前者本身也发生变化,则称前一些量是后一些量的函数。”

19世纪的数学家开始对数学的各个分支作规范整理。维尔斯特拉斯(KarlWeierstrass)提出将微积分学建立在算术,而不是几何的基础上,因而更趋向于欧拉的定义。

通过扩展函数的定义,数学家能够对一些“奇怪”的数学对象进行研究,例如不可导的连续函数。这些函数曾经被认为只具有理论价值,迟至20世纪初时它们仍被视作“怪物”。稍后,人们发现这些函数在对如布朗运动之类的物理现象进行建模时有重要的作用。

到19世纪末,数学家开始尝试利用论来规范数学。他们试图将每一类数学对象定义为一个。狄利克雷(JohannPeterGustavLejeuneDirichlet)给出了现代正式的函数定义。狄利克雷的定义将函数视作数学关系的特例。然而对于实际应用的情况,现代定义和欧拉定义的区别可以忽略不计。

返回目录

函数产生的社会背景

历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.

����函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是
函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般上的函数关系.
��函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”.

返回目录

总结:以上就是本站针对你的问题搜集整理的答案,希望对你有所帮助。