亲爱的小伙伴们,很多人可能对双曲线的参数方程公式推导_双曲线的参数方程公式不是很了解,所以今天我来和大家分享一些关于双曲线的参数方程公式推导_双曲线的参数方程公式的知识,希望能够帮助大家更好地了解这个话题。

本文目录一览

参数方程公式

参数方程公式如下:

一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。

二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。

三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。

四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。

五、直线的参数方程x=x'+tcosa,y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。

六、或者x=x'+ut,y=y'+vt(t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)。

七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。

返回目录

双曲线的参数方程

双曲线参数方程为x=x0+asecθ,y=y0+btanθ,(x0,y0)为中心,a为实轴长,b为虚半轴长,θ为离心角是由标准方程(x-x0)^2/a^2-(y-y0)^2/b^2=1推导出来的。

参数方程案例:

曲线的极坐标参数方程ρ=f(t),θ=g(t)。

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。

椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。

或者x=x'+ut, y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)。

圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。

圆的渐开线平摆线参数方程 x=r(θ-sinθ) y=r(1-cosθ)r为圆的半径,θ是圆的半径所经过的角度(滚动角),当θ由0变到2π时,动点就画出了摆线的一支,称为一拱。

返回目录

如果您觉得本文对您有所帮助,请在文章结尾处点击“顶一下”以表示您的支持。如果您对本文有任何意见或建议,请点击“踩一下”,以便我们改进该篇文章。如果您想了解更多相关内容,请查看文章下方的相关链接。