回答者:AiTalk
学习人工智能需要了解以下几个方面:
1.数学基础:高等数学、线性代数、概率论、数理统计和随机过程等。
2.算法积累:需要了解并掌握如人工神经网络、支持向量机、遗传算法等基本算法。
3.编程语言:Python、Java、C++等编程语言。
4.机器学习:了解并掌握机器学习算法,如决策树、KNN、SVM、CNN、RNN等。
5.自然语言处理:了解并掌握自然语言处理技术,包括语音识别、自然语言理解和生成等。
6.深度学习:了解并掌握深度学习技术,包括深度神经网络、卷积神经网络、循环神经网络等。
7.计算机视觉:了解并掌握计算机视觉技术,包括图像处理、目标检测和识别、图像分割等。
8.知识表示、推理和挖掘:了解并掌握知识表示、推理和挖掘技术,包括逻辑知识表示、规则表示、不确定性表示、推理学习、知识挖掘等。
9.智能控制:了解并掌握智能控制技术,包括模糊控制、神经网络控制、智能优化等。
总之,学习人工智能需要广泛的领域知识和实践经验,需要持续学习和不断探索。
回答者:IT人刘俊明
作为一名计算机专业的教育工作者,我来回答一下这个问题。
首先,人工智能专业属于计算机大类专业之一,虽然是新兴专业,但是由于当前人工智能领域的发展前景比较广阔,同时一系列人工智能技术也进入到了落地应用的阶段,所以当前人工智能专业也是热点专业之一。
人工智能专业有三个特点,其一是多学科交叉,涉及到计算机、数学、控制学、经济学、神经学、语言学等诸多学科,因此整体的知识量还是比较大的,其二是学习难度较大,人工智能本身的知识体系尚处在完善当中,很多领域还有待突破,其三是实践场景要求高。
基于这三个特点,要想在本科阶段有较好的学习效果,要有针对性的解决方案。针对于多学科交叉的情况,在大一期间一定要多做加法,尤其要重视编程语言的学习,基于编程语言来打开计算机技术大门,进而学习机器学习,而机器学习则被称为是打开人工智能技术大门的钥匙。
其二是选择一个自己的主攻方向,围绕该主攻方向来制定学习和科研实践计划。人工智能领域的方向非常多,大的方向就包括nlp、cv、机器学习、机器人学等,选择一个主攻方向会更容易形成突破。从目前的知识体系成熟度和落地应用情况来看,可以重点关注nlp、cv这两个方向。
其三是要重视为自己营造一个较好的交流和实践场景,这对于学习效果有较大的影响,建议在大一、大二期间积极参加人工智能相关的课题组。在选择课题组的时候,要考虑到自己的兴趣爱好、课题周期、实践资源等因素,从这个角度来看,学校的科研资源对于人工智能专业的同学有较大的影响。
我从事教育、科研多年,目前在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以私信我!
回答者:江西新华电脑余
1.基础数学知识:线性代数、概率论、统计学、图论;2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库;3.编程语言基础:C/C++、Python、Java;4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容;5.工具基础知识:opencv、matlab、caffe等。
回答者:宁教授网络空间元宇宙
人工智能是一个较为典型的交叉学科领域,涉及到哲学、数学、计算机、控制学、经济学、神经学和语言学等学科,所以人工智能本身的知识量还是非常庞大的。基础比较薄弱的初学者可以一边学习人工智能知识,一边补学相关内容。当前人工智能领域有六个大的研究方向,涉及到计算机视觉、自然语言处理、机器学习、自动推理、知识表示和机器人学,其中计算机视觉和自然语言处理是当前的热点领域。对于初学者来说,目前了解人工智能可以从机器学习开始,一方面机器学习的知识体系相对比较全面,学习案例也比较多,另一方面机器学习也是人工智能领域诸多研究方向的基础。
回答者:一位电子工程师
这个问题很具体,我来给你详细解答:
要学习人工智能,首先,我们需要学习相关的算法,包括基础算法(如决策树,K近邻,贝叶斯,逻辑回归)和高级算法(如深度学习,CNN,RNN,目标检测算法等)。其次,我们需要了解相应的数学概念,包括线性代数、概率论、微积分等。此外,还需要掌握编程语言,比如python,C++等,以及深度学习框架,如Pytorch,Keras,TensorFlow等。
有了上述知识的基础,我们就可以开始学习人工智能的更深层的知识,如机器学习,自然语言处理,数据挖掘等。此外,我们还要学习有关人工智能的经典书籍,如神经网络与深度学习,机器学习,自然语言处理等。
总之,学习人工智能,除了要深入学习相关的知识外,还要掌握相应的工具和技能,最后,要多实践,培养技术的实际应用能力。
除了上述技能外,在学习人工智能的过程中,还需要掌握一些相关的网络课程。 在此,可以从深度网络,像素空间,卷积信号处理,神经网络,机器学习,自然语言处理,数据挖掘等方面开始学习。
此外,对于一些技术密集型的应用,比如计算机视觉,图像识别,机器翻译,机器人控制,语音识别等,我们还需要学习相应的平台和技术,如TensorFlow,OpenCV,YOLO等。
学习人工智能,最重要的是要持之以恒,努力实践,不断积累经验,最终,你会发现,这一切不过都是漫长的学习过程。