对于美国动不动就使用制裁大棒的做法,国外学者曾撰文抨击,如果美国想要保持其在电子行业的世界领导者地位,可以加大力度投资未来的技术知识,进而与中国相匹敌。那么,美国为什么要走制裁路线呢?因为制裁更容易实施,建立一个重视知识的社会更困难。这是晚期资本主义的病态。

在公告中,BIS介绍了四项被管制技术的详细信息(观察者网有所补充)。

氧化镓(Gallium Oxide,Ga2O3)和金刚石(diamond)

BIS公告称,氧化镓和金刚石是可以在更恶劣条件下工作的半导体材料,能承受更高的电压或更高的温度,采用这些材料生产出来的设备具备更高的军事潜力。

按照材料性质划分,半导体衬底目前大致可划分为四代:

第一代以硅(Si)、锗(Ge),为代表,主要应用于低压、低频、低功率的部分功率器件、集成电路;

第二代以砷化镓(GaAs)、磷化铟(InP)等为代表,被广泛应用于光电子和微电子领域;

第三代以碳化硅(SiC)、氮化镓(GaN)等宽禁带半导体为代表,在介电常数、导热率及工作温度等方面具有显著优势,目前已逐步应用在5G通信、新能源汽车、光伏等领域;

氧化镓、金刚石等被视为第四代半导体材料。

北京科技大学教授李成明曾介绍,氧化镓是一种新型超宽禁带半导体材料,与碳化硅、氮化镓相比,氧化镓的禁带宽度达到了4.9eV,高于碳化硅的3.25eV和氮化镓的3.4eV,确保了其抗辐照和抗高温能力,可以在高低温、强辐射等极端环境下保持稳定的性质;而其高击穿场强的特性则确保了制备的氧化镓器件可以在超高电压下使用,有利于提高载流子收集效率。

从市场调查公司富士经济2019年6月对宽禁带功率半导体元件的全球市场预测来看,2030年氧化镓功率元件的市场规模将会达到1542亿日元(约人民币92.8亿元),这个市场规模甚至超过氮化镓功率元件的规模(1085亿日元,约人民币65.1亿元)。

目前,针对氧化镓展开研究的各大企业、高校和研究所都对氧化镓的性能寄予厚望,但距离真正实际应用还需要解决很多关键的瓶颈问题。研发上遇到的障碍主要有两方面,一是大尺寸高质量单晶的制作,目前仅有日企研发出6英寸单晶,但还未实现批量供货。二是氧化镓材料大功率、高效率电子器件还处于实验室阶段的研发,在大规模实际应用方面还有欠缺。