“点火”条件苛刻

为了达到核聚变所必需的极端条件,国际热核聚变实验堆(ITER)等一些设备使用高能磁场束缚燃料,并利用粒子束进行加热。NIF则采用一个不同的方法:利用激光脉冲爆炸微小燃料样本,从而产生小型核聚变激增。如果一切正常,爆炸将产生比激光脉冲更高的能量,实现净能量增益。NIF激光器约有一个露天足球场大小,能够产生192支紫外线光束,在持续1纳秒的一个脉冲中能够传递1.9兆焦能量,大约相当于一辆2吨卡车每小时行驶160公里的动能。

紫外线光束能够转变成X射线,然后袭击燃料胶囊——一个比花椒略小的中空塑料球,能容纳0.17毫克冻结的氘和氚。强烈的X射线脉冲击中燃料胶囊后能引起一些塑料发生爆炸;这也迫使剩余的塑料和冻结的燃料向中心高速聚拢。如果一切按计划进行,结果是核聚变燃料小球的状态是5000万开尔文、铅密度的100倍,足够的热量和密度能引发核聚变反应。

NIF最初的点火计划主要依赖利弗莫尔国家实验室和其他实验室的早期工作。NIF科学家曾经点燃其燃料球,并且整个过程似乎能够正常运转,模拟结果也显示NIF将能实现一些核聚变。但这些设备讲述了一个不同的故事:能量输出非常低。

2012年,国会进行了相关调查工作,最终指责NIF研究人员未能解释模拟数据和实验数据之间的分歧。2013年,NIF科学家开始更系统地探索问题的所在,并且实验室更换了新领导人,也有新科学家加盟该队伍。

最终,他们认为存在两个主要问题。燃料芯块压缩时常出现不对称情况,并产生一个环形的燃料团。而在内爆时,塑料胶囊会发生爆炸,并与燃料混合在一起,使其最终难以引发核聚变。