翼梢小翼方面,运-20并没有采用,这倒是让笔者略感失望,但又觉得在情理之中。中国在翼梢小翼上有相对较深厚的技术积累,在上个世纪八十年代初研制“运-7-100”客机时就设计有翼梢小翼,之后在2000年研制“ARJ-21”支线客机和随后设计的“C-919”客机时也有成功应用。

翼梢小翼的好处首先是降低了翼尖涡流和诱导阻力。由于机翼下部的气流压力要远大于机翼上部,在机翼翼尖会出现高压气流从机翼下部往上翻卷的现象,形成翼尖涡流,这会让机翼翼尖升力大减,形成诱导阻力,从而降低了全机的升阻比。翼梢小翼则可以分导气流,将翼下的高压气流导引至机翼外侧并上移至层流之上,进而大大减弱翼尖涡流,降低诱导阻力,这还使机翼上下表面的压力差变得更大,反而提升了机翼升力。阻力降低,升力提高,这直接的好处就是油耗降低、航程增加、巡航速度提高,还增强了飞机的爬升能力;第二个好处则是增加了飞机的抖颤裕度,抖颤裕度的增加可使飞机在更高的高空飞行,这进一步增加了航程;第三个好处则是翼梢小翼使飞机产生的尾流有明显减小,在编队飞行时对后机尾流干扰也变得更小,这还有利于提高飞机起降和巡航性能;第四则是降低了飞机起降过程中的噪音,这一点对民航客机来说至关重要,甚至比降低油耗,增加航程还具吸引力。

但翼梢小翼也并不是完美无缺的,首先翼梢小翼会增加重量,还对翼根产生不小的气动弯矩,这需要加强机翼结构的强度、刚度,等于增加了不小的机翼自重,还会加剧机翼疲劳,造成全机的整体寿命下降,对于军用飞机来说,这一点也许不那么容易接受;第二翼梢小翼虽然面积不大,但却处于机翼的末梢,而机翼的位置正好是全机的重心点上,所以像小风帆一样的翼梢小翼一受到较大的侧风影响,就会像杠杆原理一样,撬动整架飞机都受到巨大影响,而且会让飞机的水平机动能力变得较差,机动性下降,对于军用飞机来说同样很难接受;第三翼梢小翼虽然降低了诱导阻力,却增加了摩擦阻力和干扰阻力,这等于减弱了翼梢小翼在降低诱导阻力方面的好处,还增加了飞机控制的复杂性;第四翼梢小翼的制造成本和后期维护成本也是不可小视的一笔较大费用。

所以在通盘考虑利弊以后,军用运输机很少采用翼梢小翼,包括像欧洲的A-400,乌克兰的安-70、日本的XC-2这些新锐运输机也没有采用。C-17是主流军用运输机中唯一采用翼梢小翼的,C-17最开始其实也没有设计翼梢小翼。后因为美空军要求在92m×122m的停机坪里可以停放3架C-17,于是翼展被迫减少了3米,为了弥补由此造成的升力损失,才加装了翼梢小翼,C-17的翼梢小翼不仅降低了翼展,还可以降低油耗2%左右,减少阻力3%左右。翼梢小翼最早是在道格拉斯公司的DC-10上成功应用的,它的发明者同样是美国NASA的理查德·惠特科姆博士,所以C-17的翼梢小翼,其实是NASA设计的。理查德·惠特科姆博士实在是空气动力学方面的天才,不仅发明了超临界机翼、翼梢小翼,还发现了跨音速面积率,为战后航空业的发展做出了巨大贡献。